Solid Hydrogen Target Cooling and Warming Procedure

December 2018

1 Introduction

This document contains the instructions for cooling and warming processes when formig the hydrogen target.

2 Setting up the Labview Program

- 1. Open Labview using SHT program shortcut on Desktop.
- In Labview, change the logging file path. Define todays date in format yymmdd in place of xxxxxx and hit enter.
- 3. Click the arrow in the upper left corner of the window to start.
- Click 'Configure' to send command to instrument, then click 'Run' to start running scan cycle for data logging.
- In the upper right corner of the Labview window, set the scan interval (default 10 s) and the file-save interval (default 1/30).

The following list contains the labels and their descriptions from the Labview program.

VAC-CC10 Wide range vacuum monitor.

VAC-TM1 Hydrogen line vacuum monitor.

VAC-TM2 High vacuum monitor.

VAC-PM Low vacuum monitor.

PtCo1 Target temperature.

PtCo2 Radiation shield temperature.

TGT-Heater Target heater DC voltage.

H2-Press Hydrogen Pressure.

VAC-CC10 and VAC-TM2 read the same vacuum using different gauges.

3 Cooling Process

Valve	Initial Condition	Purpose	
\mathbf{V}_0	closed	Controls flow of H to diffuser.	
$\overline{V_1}$	closed	Fine control of H from system to Vo. Valves removed Z	019
$-\mathbf{V}_2$	closed	Bypasses V_1 to hydrogen supply line and V_0 .	
V_3	closed	Controls H flow from system to V_2 .	
\mathbf{V}_4	open	Controls flow from small hydrogen cylinder to system.	
V_5	closed	Opens system to roughing pump.	
V_6	closed	Controls flow of H_2/D_2 from V_7 to system.	
V_7	closed	Controls flow from H_2/D_2 bottle to V_6 .	